

AN INVESTIGATION OF LOW MASS RATIO EW SYSTEMS FROM CATALINA SKY SURVEY

Lalounta E.¹, Papageorgiou A.^{2,3}, Christopoulou P.-E.¹ Catelan M.^{2,3}

¹Department of Physics, University of Patras, Greece ² Pontificia Universidad Católica de Chile, Santiago, Chile ³ Millennium Institute of Astrophysics, Santiago, Chile

EW SYSTEMS

- Systems in physical contact: $\Omega_1 = \Omega_2 = \Omega = \text{pot } \&$ $\Omega_{\text{in}} > \Omega > \Omega_{\text{out}}$, thus 0<f<1, where $f = \frac{\Omega - \Omega_{\text{in}}}{\Omega_{\text{out}} - \Omega_{\text{in}}}$ • Different masses almost equal T_{eff}
- A-type $(M_2/M_1 < 1 \& T_2/T_1 < 1)$ or W-type $(M_2/M_1 < 1)$

 (T_{1}^{2}/T_{1}^{2})

• 0.22 < P < 1 day

Rucinski (1992)

• A, F, G, K s.t.

Importance of Low Mass Ratio (LMR) EWs

 $\odot M_2/M_1 \le 0.25 \implies LMR$

• $M_2/M_1 \le 0.25$ & FF $\ge 50\%$ \implies Deep Low Mass Ratio (DLMR) EWs

*J*_{orb} <3(*J*_{1,spin} + *J*_{2,spin}), (Darwin instability): ■ q_{min} =0.070-0.109 (Rasio 1995, Li & Zhang 2006, Arbutina 2007, 2009 etc)

 But...the observational data challenge the theory

LMR EW systems LC morphology

The idea...

 Take advantage of the LC morphology to find LMR EW systems in Catalina Sky Survey (Drake 2014)

The tool...

• Fourier decomposition of LCs according to:

 $m(t) = A_0 + \sum_{i=1}^{10} \left[a_i \sin(2\pi i \phi(t)) + b_i \cos(2\pi i \phi(t)) \right] \quad (1)$ (Deb & Singh 2009)

Method...

- Gather all the available LCs (44) in V band of the confirmed LMRs from the literature:
- 1. Phase & normalized flux diagrams
- 2. Fourier coefficients (eq.1)
- 30592 EW LCs from Catalina Sky Survey (Drake et al. 2014):
- 1. Clean LCs by 3sigma clipping
- 2. Epoch determination, phase & normalized flux diagrams
- 3. Fourier coefficients (eq.1)

• b_8 , b_6 , b_9 , b_{10} Fourier **cosine** coefficients

b₆b₈b₁₀ Literature (blue points) & 92 LMR suspected systems (black points)

For the 92 LMR candidates...

• Search for systems' temperatures:

- 1. Cross match with Marsh et al. (2016) catalog (52 EW systems)
- 2. Average from Gaia (DR2) & J-H (Cutri 2003)
- Consider $T_{system} = T_1$ (see next step)

Initial models for PHOEBE-0.31a scripter (Prša & Zwitter 2005)

- Clean LCs :
 - 1.mode = overcontact binary not in thermal contact
 - 2.q = 0.1
 - 3.incl = 80°
 - 4. $T_1 = T_{syst}$
 - 5. $A_{1,2} = 0.5 \& g_{1,2} = 0.32 \& F_{1,2} = 1$
 - 6.LD coefficients Van Hamme tables (logarithmic law)
- Refine periods & epochs

qi scan script

- T1, q, incl **fixed**
- T2, pot(pot1=pot2), L free

• 2D grid search: 1. q = [0.1-0.6] with $q_{k+1}-q_k = 0.05$ & incl = $[68^{\circ} -90^{\circ}]$ with $incl_{k+1}-incl_k=1^{\circ}$ (q_{min} , $incl_{min}$) 2. $q = [(q_{min}-0.05)-(q_{min}+0.05)]$ with $q_{k+1}-q_k = 0.01$ & incl = $[68^{\circ} -90^{\circ}]$ with $incl_{k+1}-incl_k=1^{\circ}$

Final solution best (min chi2) q-incl pair as initial values

Testing the method

Synthetic LC with q = 0.096, incl=81.4° & Verror≈0.01 & Npoints≈350

White cross \rightarrow (0.096, sin81.4) real solution red cross \rightarrow (0.10, sin83) qi scan best solution

FINAL CATALOG

Created a final catalog with the physical parameters (incl, T_2/T_1 , R_2/R_1 , FF, HJD0 & Per) of 92 **new** LMR EWs

Performance in CSS data

Performance in CSS data

 $q = M_2/M_1$

Error budget-Monte Carlo simulation

For each system

• Start loop:

- > Create synthetic LC from the observed LC
- > Fit the synthetic LC by adjusting T2, pot, L & incl $(T_1=T_{eff} \& q_{min} fixed)$

• End of loop

Run 1000 x loop
Ioop
Ioo
Ioop
Ioo
Ioop

 Extract the lower and the upper bound of error from the 16th and 84th quartile of each parameter distribution (T2/T1, R2/R1, pot1, incl)

Example of the parameters distribution for one system

Distribution of inclerr

IN THE FUTURE...

- Publish this work
- Period study of these systems
- Search other catalogs (already ASAS)
- Find interesting LMR EWs for photometric & spectroscopic follow up observations

Thank you for your attention