CIRCUMBINARY PLANETS

"Bonjour David,

. . .

Pour la petite histoire, quand en 1990-92 j'avais demandé des crédits pour chercher des transits autour de CM Dra, **les "autorités scientifiques" avaient * répondu** qu'il est bien connu que les orbits circumbinaires sont instables et que **ces planètes ne peuvent exister.**

these planets cannot exist

Cordialement,

Jean Schneider"

the "scientific authorities" told me

CIRCUMBINARY PLANETS THE NEXT STEPS

David V. Martin

Daniel Fabrycky University of Chicago

Amaury Triaud University of Birmingham

Veselin Kostov NASA Goddard

THREE PROBLEMS

BIASED Sample

Radius Not Mass

Poor Atistics

BIASED Sample

Radius Not Mass

Poor Atistics

TRANSITING EARTHS

TRANSITING EARTHS

Radius ratio: ~ 1/100 Area ratio: ~ 1/10,000

Transit depth ~ 0.01%

1.0001 1.0000 0.9999 0.9998

1.0001 1.0000 0.9999 0.9998 0.9997 -3 -5

1.0002 Normalised flux 1.0001 1.0000 0.9999 0.9998 0.9997

-5

-3

5 3 _1 Time since mid transit (hours)

1.0002 Normalised flux 1.0001

1.0000 0.9999 0.9998 0.9997

-3

10 transits

3 5 _1 Time since mid transit (hours)

OLD METHOD

INDIVIDUALLY SIGNIFICANT TRANSITS

GIANT PLANETS

IN -SITU VS MIGRATION

???

Hansen & Murray (2012) Cossou+ (2014) Martin & Livio (2016) Lee & Chiang (2016)

SHUVS MIGRATION **BUT...** Chachan+ (2019)

~3 X BINARY SEPARATION

CAN'T FORM HERE

Artymowicz & Lubow (1994)

OR HERE Pelupessy (2012) Meschiari (2013) Lines (2016)

BUT FAR AWAY IS FINE

Pierens & Nelson (2013,18) Kley & Haghighipour (2014,15) Sutherland & Kratter (2019)

NEW METHOD

FOLD ON VARIABLE TRANSIT TIMES AND DURATIONS

SMALL PLANETS

DIFFICULTIES

DIFFICULTIES

1. TTVS AND DYNAMICS DEMAND N-BODY ...BUT N-BODY IS SLOW

PARAMETER LIST

Binary

Period, PPeriodEccentricity, eEccentricityArgument periapse, ωArgOrbital phase, θOrbitalInclination, IIncLong. Ascending Node, ΩLor

Planet

- Period, P
- Eccentricity, e
- Argument periapse, ω
- Orbital phase, 9
- Inclination, I
- Long. Ascending Node, Ω

Bodies

MA MB Mp RA RB

18 parameters

Binary

Period, P Eccentricity, e Argument periapse, ω Orbital phase, 9 Inclination, I Long. Ascending Node, Ω

Planet

- Period, P
- Eccentricity, e
- Argument periapse, ω
- Orbital phase, 9
- Inclination, I
- Long. Ascending Node, Ω

14 parameters

Binary

Period, P Eccentricity, e Argument periapse, ω Orbital phase, 9

Inclination, I

Long. According Node, Ω

Planet

- Period, P
- Eccentricity, e
- Argument periapse, ω
- Orbital phase, 9
- Inclination, I

Long. Ascending Node, Ω

10 parameters

Bodies

Binary

Period, P Eccentricity, e Argument periapse, ω Orbital phase, 9

Inclination, I

Long. According Node, Ω

Villanova EB catalog

(e.g. Prsa+ 11, Kirk+ 16)

Planet

- Period, P
- Eccentricity, e
- Argument periapse, ω
- Orbital phase, 9
- Inclination, I

Long. Ascending Node, Ω

6 parameters

Bodies

MA

MB

Mp

RA

D

R

Binary

Period, P Eccentricity, e Argument periapse, ω Orbital phase, 9

Inclination, I

Long. According Node, Ω

Villanova EB catalog (e.g. Prsa+ 11, Kirk+ 16)

Windemuth & Agol+ 19 Moe & Di Stefano 15a,b Future Villanova RVs

MA

MB

Mp

RA

P.

R

Bodies

Period, P

Planet

- Eccentricity, e
- Argument periapse, ω
- Orbital phase, 9
- Inclination, I

Long. Ascending Node, Ω

4 parameters

OPTIMIZED SEARCH GRIDS

PERIOD

ecos w

DIFFICULTIES

1. SLOW N-BODY

2. DETRENDING EBS IS TRICKY

EFFECTS IN LIGHT CURVE • ECLIPSES (CAN BE FEW % DUTY CYCLE) • STELLAR VARIABILITY/ROTATION X2 DOPPLER BEAMING/BOOSTING • ELLIPSOIDAL VARIATION • REFLECTION • VARIABLE TRANSIT DURATION

EFFECTS IN LIGHT CURVE • ECLIPSES (CAN BE FEW % DUTY CYCLE) • STELLAR VARIABILITY/ROTATION X2 DOPPLER BEAMING/BOOSTING • ELLIPSOIDAL VARIATION • REFLECTION • VARIABLE TRANSIT DURATION

BUT IN THE END...

KEPLER 16 8.3 R_{EARTH} @ ~228 DAYS

KEPLER 47 3 REARTH @ ~49 DAYS

NJECTION 1.5 R_{EARTH} @ ~ 193 DAYS

Planet period (days)

STATUS

1. CAN FIND ALL KEPLER PLANETS 2. WINDEMUTH+ 19 MASSES WORK 3. INJECTION/RECOVERY TESTS 4. FINALISE GRID OPTIMISATION RUN ON KEPLER EBS 6. PUBLIC RELEASE RUN ON TESS

5.

TESS

BIASED Sample

Radius Not Mass

Poor Atistics

CIRCUMBINARY WORKING GROUP

Veselin Kostov

Nader Haghighipour

Jerry Orosz

Gongjie Li

Stanley (not a member)

Bill Welsh

Laurence Doyle

Dan Fabrycky

Tsevi Mazeh

Billy Quarles

Eric Agol

ALL SKY, NOT ALL TIME

Circumbinary

"1-2 PUNCH"

Time

400,000 EBs (Sullivan+ 15)

140 CBPs (Kostov+ rev.)

Bright stars!

Time

CONTINUOUS VIEWING ZONE

FIRST TESS CBP CANDIDATE!

Long cadence data with Eleanor (Feinstein+ 19)

Kostov+ (in prep)

Short cadence data

FIRST TESS CBP CANDIDATE!

 $M_A = 1.2 M_{Sun}$

Kostov+ (in prep) $M_B = 0.33 \ M_{Sun}$

 $P_{bin} = 14.6 \text{ days}$

 $P_{p} = 7.7 R_{Earth}$ $M_{p} < 100 M_{Earth}$ $P_{p} = 90 days$

FIRST TESS CBP CANDIDATE

 $M_A = 1.2 M_{Sun}$

Kostov+ (in prep)

COMPLEMENTARY RADIAL VELOCITIES

DOWN TO 2 M/S PRECISION

ROSSITER-MCLAUGHLIN

How come so many RVs? TIC 260128333 = EBLM J0609-59 = BEBOP TARGET

BINARIES ESCORTED BY ORBITING PLANETS

BEBOP

BIASED Sample

Radius Not Mass

Poor Atistics

RADIAL VELOCITIES

K_{RV} cc

m_p sin I_p

*p*1/3 *p*

PAST EFFORTS: TATOOINE

THE ASTROPHYSICAL JOURNAL, 626:431-438, 2005 June 10

© 2005. The American Astronomical Society. All rights reserved. Printed in U.S.A.

PRECISION RADIAL VELOCITIES OF DOUBLE-LINED SPECTROSCOPIC BINARIES WITH AN IODINE ABSORPTION CELL

MACIEJ KONACKI

Department of Geological and Planetary Sciences, California Institute of Technology, MS 150-21, 1201 East California Boulevard, Pasadena, CA 91125; maciej@gps.caltech.edu Received 2004 October 15; accepted 2005 February 25

> THE ASTROPHYSICAL JOURNAL, 704:513-521, 2009 October 10 © 2009. The American Astronomical Society. All rights reserved. Printed in the U.S.A.

THE RADIAL VELOCITY TATOOINE SEARCH FOR CIRCUMBINARY PLANETS: PLANET DETECTION LIMITS FOR A SAMPLE OF DOUBLE-LINED BINARY STARS-INITIAL RESULTS FROM KECK I/HIRES, SHANE/CAT/HAMSPEC, AND TNG/SARG OBSERVATIONS

MACIEJ KONACKI^{1,2}, MATTHEW W. MUTERSPAUGH^{3,4}, SHRINIVAS R. KULKARNI⁵, AND KRZYSZTOF G. HEŁMINIAK¹

THE ASTROPHYSICAL JOURNAL, 719:1293-1314, 2010 August 20 © 2010. The American Astronomical Society. All rights reserved. Printed in the U.S.A.

HIGH-PRECISION ORBITAL AND PHYSICAL PARAMETERS OF DOUBLE-LINED SPECTROSCOPIC BINARY STARS-HD78418, HD123999, HD160922, HD200077, AND HD210027

doi:10.1088/0004-637X/704/1/51

doi:10.1088/0004-637X/719/2/1293

MACIEJ KONACKI^{1,2}, MATTHEW W. MUTERSPAUGH^{3,4}, SHRINIVAS R. KULKARNI⁵, AND KRZYSZTOF G. HEŁMINIAK¹

PAST EFFORTS: TATOOINE

Double-lined spectroscopic binaries:

KONACKI + 10

PAST EFFORTS: TATOOINE

Tatooine: double-lined spectroscopic binaries:

FROM KONACKI ET AL. 2010:

Current state-of-the-art precision is at the level of $\sim 1 \text{ m s}^{-1}$. It is however important to note that such a precision refers to single stars or at best single-lined spectroscopic binaries where the influence of the secondary spectrum can be neglected. In

New approach: use single line binaries.

Take the best EBLM targets to form BEBOP

ECLIPSING BINARY ADVANTAGES

Maximised radial velocity amplitude

Maximised, almost guaranteed transit probability

Secondary mass, radius known

Predict secondary magnitude to avoid contamination

BORUCKI & SUMMERS 86 SCHNEIDER 94 MARTIN & TRIAUD 15 LI+ 16 MARTIN 17

CORALIE

2008 - 2017 59 nights Martin, Triaud + (2019)

LONG-TERM

EBLM							BEBOP				
200	8		2010	2	2012		2014		2016		2018
J0008+02					♦	0			♦ □	\	
J0035-69					()						
J0040+01									$\diamond \diamond $		
J0055-00								$\diamond \diamond \diamond$			
J0104-38				• •					\Leftrightarrow	$\diamond \diamond$	
J0218-31	\Leftrightarrow									$\diamond \diamond$	
J0228+05							♦ ♦∎				
J0310-31										♦	
J0345-10											
J0353+05								\diamond		$\diamond \diamond$	
J0353-16	♦							(♦	
J0418-53							♦			$\qquad \qquad $	
J0425-46										♦	
J0500-46								\$		$\diamond \!\!\!\! $	
J0504-09			♦	\blacklozenge							
J0526-34	\diamond		\$\$							♦	
J0540-17							♦ 🔯		• •		
J0543-57								♦ ♦	♦ □		
J0608-59			🔷 🗖 💠						♦	♦	
J0621-50											
J0659-61									$\diamond \diamond \diamond \diamond \diamond$		
J0948-08			\$					♦ •			
J0954-23					\				♦		
J0954-45	\Leftrightarrow	\diamondsuit								♦	
$T_{1014-07}$											

10/15 minute observation

30 minute observation

Two RV signals

Time (BJD - 2,455,000)

CORALIE RESULTS

MARTIN, TRIAUD+ 19

CORALIE RESULTS

MARTIN, TRIAUD+ 19

NCLINATION DISTRIBUTION

Circumbinary abundance

1σ Gaussian mutual inclination spread (deg)

ARMSTRONG+14 MARTIN, TRIAUD + 19

MOVING FORWARD...

HARPS @ LA SILLA 7 nights 2017 80 nights 2018 - 2020

SOPHIE @ OHP 2018 - 2021 257 nights

BASELINE & PRECISION

HARPS & SOPHIE EXTENSION

RV TRENDS

IMAGING FOLLOW-UP

Keck

Ji Wang (THE Ohio State University)

LBT

SOAR

Andrei Tokovinin (CTIO, Chile)

Radius Not Mass

BEBOP

Poor Statistics

TESS -

CIRCUMBINARY PLANETS THE NEXT STEPS

David V. Martin

