Hierarchical triple star systems towards the Galactic Bulge through the OGLE's eye

T. Hajdu,T. Borkovits, E. Forgács-Dajka, J. Sztakovics, G. Marschalkó, G. Kutrovátz

Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, H-1121 Budapest, Konkoly Thege Miklós út 15-17, Hungary

2019.09.07

- Introduction

Hierarchical triples and OGLE

Introduction

Hierarchical triples

The Optical Gravitational Lensing Experiment (OGLE)

Basic steps of analyses version 1

Preparations

System selection

Most light curves do not contain enough data points. ${\sim}450~000~\text{EB}$ \rightarrow ${\sim}80~000~\text{EB}$

Determination of times of minima

- Automatic method to detect phases of beginning and ending of eclipses
- 12-th order polynomial template functions for the primary and secondary eclipses
- 1 normal minimum for every 17 consecutive binary cycles

$$f_{ecl}(p) = a_0 + a_1 \cdot f_{temp}(p + a_2)$$
 (1)

- Basic steps of analyses version 1
 - Preparations

Determination of times of minima

- Automatic method to detect phases of beginning and ending of eclipses
- 12-th order polynomial template functions for the primary and secondary eclipses

Basic steps of analyses version 1

Preparations

Determination of times of minima

■ 1 normal minimum for every 17 consecutive binary cycles

$$f_{ecl}(p) = a_0 + a_1 \cdot f_{temp}(p + a_2)$$
 (2)

- Basic steps of analyses version 1
 - ETV analyses

ETV analyses

- Simple sinusoidal curve + a parabolic function (6 parametersa) with grid + Levenberg-Marquardt $\rightarrow P_2$
- LTTE fit
- Checking the result

- Basic steps of analyses version 2
 - └─Only 1 parameter fit

Another way

Only one parameter (a_2)

- All possible eclipse minima
- For short period triples
- Conditions: Eclipses do not change

Search for short periodic triples

- Phase dispersion minimization (PDM) from 10 days to 1000 days with 0.1 day steps
- Candidates:
 - P_2 for primary and P_2 for the secondary is almost the same
 - $P_2 < 300 \text{ days}$
 - Phases are the same (to avoid spotted binaries)

Basic steps of analyses version 2

Only 1 parameter fit

Another way

Results

Systems with double periodic ETVs

Systems with double periodic ETVs

Results

Systems with significant dynamical effect

Systems with significant dynamical effect

Systems with significant dynamical effect

red : O-C of the normal minima;

Results

System with possible substellar companion

System with possible substellar companion

OGLE-BLG-ECL-200302

- $P_1 = 0.24^d \text{ W UMa type}$
- *M*(*P*)_{*AB*} = 1.29*M*_☉ (Dimitrov, D. P.; Kjurkchieva, D. P. 2015)

$$f(m_C) = 0.00002 \pm 0.00003$$

$$m_{Cmin} = 0.034 \pm 0.044 M_{\odot}$$

Statistical analyses of the results

 $-e_2$

Outer eccentricity

Selection

- $\hfill P_2 < 1500^d$ and the amplitude is at least 3 times higher than the variance of the residual
- or $P_2 < 1000^d$

Kernel Density Estimation (KDE)

$$f(e) = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{\sigma_i \sqrt{2\pi}} \exp\left(-\frac{(e-e_i)^2}{2\sigma_i^2}\right)$$
(3)

DashStatistical analyses of the results

 $-e_2$

Outer eccentricity

 e_2

Statistical analyses of the results

 \square_{P_2} distribution

 $P_1 \ \mathrm{vs} \ P_2$

Statistical analyses of the results

 \square_{P_2} distribution

EBs-Triples ratio

DashStatistical analyses of the results

Amplitude distribution

Statistical analyses of the results

 $-M_{3min}$

Minimum mass distribution

Summary and conclusion

Summary and conclusion

Results

- More than 1000 hierarchical system candidates
 - Quadruple systems
 - Systems with significant dynamical amplitude
 - Triple with a substellar third component
- Statistical analyses
 - Peak in the eccentricity around $e_2 \approx 0.3$
 - \blacksquare Period \sim probability of triplicity
 - $q_{2min} < 0.5$ in most cases

Next steps

ETV analyses of the new short periodic systems