Composite-Spectrum Binaries

The Good, the Bad and the Ugly

Elizabeth Griffin Dominion Astrophysical Observatory, Canada

Definition: Detached binary

Red Giant: G-K-(M) + Hot Dwarf (B-A)

Sample of 45 Composite-Spectrum Binaries

	Cool Primary (evolved)	Hot Secondary (much less evolved)
1. Range of spectral types	G0 - M2	B5 – F2
2. Am stars	1 (o Leo)	9 (20 %)

3. Triple systems	6, maybe 7 (14 %)	
4. Eclipsing systems	9 (20 %)	
5. Astrometric orbits	12 (27 %)	
6. Range of periods	14 days – 65 years	
	< 120 days: 11 (24 %)	
	0.3 – 3 years: 12 (27 %)	
	> 3 years: 22 (49 %)	

THE GOOD ...

Separating the components of the composite-spectrum binary 45 Cnc. An appropriate G-giant spectrum – see panel (a) – is subtracted from the observed composite spectrum in panel (b), leaving the spectrum of the secondary star, 45 Cnc B – see panel (c) – as a residue. Panel (d) contains a synthetic spectrum which is a close match to that of 45 Cnc B.

Spectra of ζ Aur passing through eclipse, showing changing chromospheric absorption both before and after totality. The strengths of those lines are strongly phase-dependent, and vary noticeably within 1 day. Upper: Observed composite spectra. Lower: After the giant's spectrum has been subtracted, leaving the spectrum of the mid-B dwarf, plus chromospheric absorption. Quantitative measurements are now possible.

Uncovering exquisite detail in a chromospheric-eclipse spectrum of ζ Aur.

(a): (the giant spectrum alone, observed during total eclipse)

(b): Giant's spectrum (observed during totality)

(c): spectrum of the B star (note the broad line of HeI at $\lambda 4026$ Å) with numerous sharp lines of chromospheric absorption superimposed.

HR 6902. Above: ingress in 2009, before removing the giant's spectrum. Below: Nightly changes seen against the B-star spectrum, after subtracting that of the G8 IIb primary.

Top three: Ingress into total eclipse of 22 Vul (G8Ib + B9 V). Lower three, in blue : Same spectra, but after subtraction

Chromospheric line-profiles in different eclipses of ζ Aur. Red: 2003, blue: 2006, green: 2009, light blue: 2014. Black: 2003, at an earlier phase (deeper in the chromosphere).

A brief partial eclipse of τ Per

 γ Per eclipses for 8 days, but its chromosphere is either extremely thin or is too hot to be detected in Ca^+

THE BAD ...

50%

100%

and THE UGLY ...

1.5

·4 HR 6497 B ·6

2

1

2.5

3.5

 (γ)

3

·8

·0

Days 0.5

·2 Phase

·0

0

100

0

-100

Radial Velocity (km $\rm s^{-1}$)

 $m_1 \sin^3 i = 3.06 M_{\odot}$

 $m_2 \sin^3 i = 4.97 M_{\odot}$

We find $i_o = 80^\circ$

HR 6497

INNER ORBIT :

 $m_1 \sin^3 i = 2.21 \ M_{\odot}$ $m_2 \sin^3 i = 2.15 \ M_{\odot}$ $m_1 + m_2 = 4.36 \ M_{\odot}$

We find $i_i = 72^{\circ}$

