Symbiotic binaries

ARAS Monitoring and PRO-AM collaborations

François Teyssier ARAS group

Telc 2019, September Binaries in Universe, Universe of Binaries

□ Introduction to symbiotic stars

□ ARAS monitoring and collaborations

□ A look at the activity of a few symbiotic stars

- EG And: orbital variations
- AX Per: orbital behaviour and 2019 outburt
- Z And: 2018 outburst
- AG Dra: monitoring of outbursts
- CH Cyg:
- T CrB: monitoring of a recurrent nova before expected outburst
- V3890 Sgr: recurrent nova

Merrill, 1919

R Aqr, the « platypatus » : « A peculiar spectrum » A VARIABLE STAR WITH A PECULIAR SPECTRUM The long-period variable star R Aquarii 233815 has been found recently to possess a very peculiar spectrum. The data concerning

On the first three plates the chief nebular lines $N\tau$ and $N_2,$ and λ_{4363} are very conspicuous. On the later plates they are relatively

Merrill, 1932

A Bright Line of Ionized Helium, λ4686, in Three Stellar Spectra with Titanium Bands

1. Anon 1h 31m8	+53° 52'	AX Per
2. RW Hydrae 13 30.2	25 1	RW Hya
3. Anon19 47.3	+35 29	CI Cyg

In the spectra of these stars bright hydrogen lines and a narrow bright line of wave-length 4686A are superposed on a continuous background showing dark titanium bands whose intensities are about equal to those regularly found in class M4. The

Z And Prototype in the GCVS

Symbiotic concept

Low-temperature absorption spectrum High-excitation emission lines

Merrill, 1958

51 — SYMBIOSIS IN ASTRONOMY: INTRODUCTORY REPORT

spectrograms. Thus Z Andromedae has become the prototype for those anomalous «symbiotic» stars in which high-excitation emission lines are superposed on a low-temperature absorption spectrum, usually of type M.

Z And 2016-01-16 18:14:19 R = 903 J. Guarro

A spectroscopic definition (Belczinski & al., 2000)

1. The presence of the absorption features of a **late-type giant**; in practice, these include (amongst others) TiO,H2O, CO, CN and VO bands, as well as Ca I, Ca II, Fe I and Na I absorption lines.

2. The presence of **strong emission lines of HI and He II** and either

- emission lines of ions with an ionization potential of at least 35 eV (e.g. [OIII]), or

– an A- or F-type continuum with additional shell absorption lines from HI, He II, and singly-ionized metals.

The latter corresponds to the appearance of a symbiotic star in outburst.

3. The presence of the 6825 emission feature, even if no features of the cool star (e.g. TiO bands) are found.

"every known symbiotic star has, at one time or another, violated all the classification criteria invented" (Kenyon, 1986)

> "a binary in which a red giant transfers enough material to a WD for the interaction to produce an observable signal at some waveband." (Sokolovski, 2017)

Catalogs

Authors	Date	Nb Syst	Suspected
Allen	1984	129	15
Kenyon	1986	135	20
Belczinski & al.	2000	188	28

On line catalog:

Jaroslav Merc, Rudolf Gális, and Marek Wolf (2019)

http://astronomy.science.upjs.sk/symbiotics/galactic-symbiotic-stars/

Wide interacting binaries (orbital periods 1 to 3 years)

- Red giant (RG) as the donor star
- Accreting white dwarf (WD) : $T_h = 10^5 \text{ K L}_h 10^1 10^4 \text{ L}_{\odot}$
- Nebula partially ionized by the hot component

Radio survey of symbiotic stars Seaquist, Taylor, Button 1984

$$X = \frac{4\pi a L}{\alpha} \left(\frac{m_H v}{M'}\right)^2$$

a = séparation
L = luminosity of the ionizing photons
v = speed of the stellar wind
M' = RG loss rate

Spectral type of the Red Giant Distribution

Later type than single RG

- \rightarrow High mass loss
- \rightarrow = condition of symbiotic pheomenon

Cool component classification

Keyes & al, 2004 Mürset & al., 1999 Kenyon & al., 1987

RG Mass loss rate from Single RG Reimers (1975)

$$M' = 4.10^{-13} \eta r \left((L_* R_*) / (M_*) \right)$$

L_{*} R_{*} / M_{*} ~ 100 000

 $M' \sim 10^{-8} M_{\odot} / an$

ηr : 1/3 à 3 L_{*} R∗ M∗ in M_⊙ M' en M_☉ / year

Symbiotics : $\dot{M} \sim 10^{-7} M_{\odot}$ / an

Radio emission [Seaquiest, 2019]

Nebular emission [Skopal, 2005]

Temperature Distribution – S+IR type

[Akras, 2019]

Introduction to Symbiotic Stars

Hot Component

Accretion on WD: 3 regimes

Nuclearly powered

1.

Accretion

Most of RG in symbiotic systems do not fill their Roche Lobe
Bondi Hoyle accretion: too low accretion rate for steady burning regime
→ Wind Roche Lobe overflow (WRLOF)
→ Wind compression model (WCM): rotation of the RG
Subject to debates

Accretion disks

No evidence for permanent accretion disks [e.g. Mürset & al., 1991]

Formation of accretion disk during outbursts e.g. Z And 2006, 2010

Accretion disk in accretion powered symbiotics Source of X-rays (boundary layer) e.g. T CrB, RT Cru (Luna & al., 2019)

Skopal & Carikova, 2015

 $\dot{M}_{\rm hot}$ x factor 5-10

Classical Symbiotic model

Increasing accretion rate Enhanced mass outflow from the hot component

Lightcurves

Z And V band lightcurve – Data: Sekeras &al., 2019

Stable: wavelike variations ~ +++ 0.1 mag

• High states, low states

V

Introduction to Symbiotic Stars

Composite spectrum as a result of the 3 components of the system

Emission lines in quiescence

Emission lines: orbital variations

CI Cyg [Fe VII] 6087

2017-12-11

2017-11-30

2017-11-01

70

0.048

0.035

0.001

[Fe VII] 6087: orbital motion

H β : egress of the eclipse

Emission lines in outbursts

Add FWHM and ½ FWZI

Introduction to Symbiotic Stars

Orbital éléments: CI Cygni

Red giant orbit

Tracing the hot component

Range 6370-6460 Å 13 Lyr M6 III Reference

CI Cygni

Echelle spectra (33)

R = 9000 to 13000 F. Teyssier (FR) J. Guarro Flo (SP) T. Lester (CA)

0.25

0.50

0.75

1.00

0.00

Symbiotic stars monitoring by ARAS group 4600 spectra of 56 objects Since 2009 At resolution 500 to 15000 Acquired by ~ 40 observers Using

- Slit spectrographs (R = 500 to 15000)

Echelle spectrographs (R = 9000 to 14 000)
 Mounted on small telescopes (20 – 50 cm)

- Autonomous observing program
- Use of the data for publications and
- Collaborations with professional teams

Mag V = 7 to 14

CH Cyg	756
AG Dra	613
T CrB	304
V694 Mon	302
AX Per	288
AG Peg	257
CI Cyg	213
R Aqr	182
SU Lyn	164
BF Cyg	159
Z And	155
EG And	126
UV Aur	81
NQ Gem	76
TX CVn	68
BX Mon	64
ZZ CMi	61
V443 Her	60
TCPJ195442	59
RS Oph	54
BD Cam	47
CQ Dra	38

Omi Cet	33
V627 Cas	33
V934 Her	31
V471 Per	30
YY Her	30
PU Vul	24
V1016 Cyg	21
V1329 Cyg	21
StHa 190	21
RW Hya	19
LT Del	19
V1261 Ori	17
V1413 Aql	15
HM Sge	13
IV Vir	12
V335 Vul	12
QW Sge	12
V407 Cyg	12
ER Del	11
StHA 55	10
GH Gem	9
FG Ser	9

FN Sgr	9
V919 Sgr	9
V503 Her	8
SS Lep	8
AS 270	6
StHa 149	6
StHa 32	5
StHa 169	5
AS 210	4
RT Ser	3
AS 289	3
RR Tel	3
Hen 3-1341	2
Hen 3-1768	2
StHa 180	2
Hen 2-468	2
RT Cru	1
Hen 3-1342	1
AS 245	1
AS 323	1
EF Aql	1

EG And

Low luminosity Accretion powered

EG And

Kenyon & Garcia, 2016

EG And

Collaboration: N. Shagatova, A. Skopal

 $H\alpha$ profile: Orbital variations

Echelle spectra R = 9000 to 13000 F Teyssier, J. Guarro, T. lester

- High inclinaison ~ 80° (Vogel & al., 1992)
- \circ $\,$ lonized and neutral region
- ightarrow orbitally related variation of the profile

EG And

Collaboration: N. Shagatova, A. Skopal

 $\mbox{H}\alpha$ profile: Orbital variations

Hα orbital variations of the symbiotic star EG And from optical spectroscopy Shagatova, N. & al., 2019 Contributions of the Astronomical Observatory Skalnaté Pleso, vol. 49, no. 2, p. 406-410

Fitting of \square H α profile with 3 components

Broad wings emission

Core emission

□ Absorption

EG And

Shagatova, N. & al., 2019

Stará Lesná (G1) Skalnaté Pleso (SP) observatories ARAS 2015-2018

Ephemeris:

Equivalent widths of the core emission and absorption strongest at $\phi = 0.4$ weakest at $\phi = 0.2$

 \rightarrow asymmetry of the circumstellar matter density distribution

Emission near the eclipse

ightarrow Emission region larger than the size of the RG

Symbiotic stars monitoring: AX Per

AX Per

Classical symbiotic Eclipsing

T _{WD}	105 000 K	
L _{WD}	710 L $_{\odot}$	
M_{WD}	$0.4~{ m M}_{\odot}$	
М _{WD}	3.10 ⁻⁷ M _☉ /y	
Sp. type	M5 III	
M _{RG}	$1.1~{ m M}_{\odot}$	
P _{orb}	682.1 d	Fekel & al. (2000)
е	0	Fekel & al. (2000)
d	3357 рс	Gaia DR2

David Boyd – LISA – R = 1000 – Flux calibration with photometry in Johnson V

High ionization lines: He II [OIII] [Fe VII]

Symbiotic stars monitoring: AX Per

13

0

0.1

0.2

Current outburst: brown squares

31

32

AAVSO V band 1 day mean According to phase

0.3

0.4

0.5

0.7

0.6

0.8

0.9

1

Symbiotic stars monitoring: AX Per

Long term monitoring Low resolution spectra (LISA R = 1000) Flux calibrated obtained by David Boyd since 2015

0.25

Symbiotic stars monitoring: AX Per 2019 outburst

AX Per

Outburst 2019

The symbiotic star AX Per is going into strong outburst

ATel #12660; J. Merc (UPJS in Kosice, Charles University), R. Galis (UPJS in Kosice), F. Teyssier, D. Boyd, W. Sims, C. Boussin, F. Campos (ARAS) on 13 Apr 2019; 11:21 UT

Flux calibrated spectra – D. Boyd – LISA R = 1000

AX Per

Rise to maximum:

Low ionization lines HI, HeI and continuum increase He II increases more slightly [Fe VII] vanishes very early TiO bands weakens

Maximum: He II fades quickly

Low res spectra D. Boyd (LISA R =1000) C. Boussin (Alpy R = 600) W. Sims (LISA R =1000)

AX Per: T_{hot} during the outburst

Symbiotic stars monitoring: Z And 2018 outburst

Z And

The activity of the symbiotic binary Z Andromedae and its latest outburst

Merc & al., 2019

Proceedings of the 50th Conference on Variable Stars Research, vol. 197, 2019

V Mag in 2018 Sekeras & al. (2019)

Significant decline of EW Drop of the temperature (145 to 129 10³ K)

Satellite components during 2006 & 2010 outbursts (bipolar jets) No detection in 2018

Each outburst is different and must be studied to constraint the models

Symbiotic stars monitoring: AG Dra Outbursts and Quiescent states

Gaia DR2

рс

AG Dra

d

Raman OVI $\lambda\lambda$ 6830, 7085

Mysterious lines marked « ? » in number of publications before 1990 Identified as Raman scattering of OVI $\lambda\lambda$ 1032, 1036 by H⁰ in 1990 by Schmid

Characteristic of Symbiotic Stars (Belckzinski & al., 2000)

Specific physical conditions:

- presence of a hot radiation source (O⁵⁺⁾
- enough neutral hydrogen atoms

Double, triple peaked → Motion of the emission and/or Scaterring zone

Collaboration: J. Merc, R. Gàlis, Leedjarv

Two periods: 550 days: orbital motion 355 days: pulsation of the RG (Hric & al., 2014 – Gàlis & al., 2019a)

550 spectra obtained since 2015 Resolution 500 to 15000

> Current series of 4 outbursts Spaced by ~ 330-360 days **~ pulsation of the giant** Data : V in Sekeras & al., 2019 No outburst detected in 2019

Two types of outburst in AG Dra

- Cool outburstDecrease of the temperature (10-25%)
= expension ($R_{wd} \ge 2-6$) /cooling of the WD
Longer and brighter
- Hot outburstIncrease of the temperature of the WD at ~ constant radiusLonger and brighter

« The variety of behaviours cannot be fully described because of the scarcity of the observations during the early stage of the outburst »

 Thot
 Rhot [Ro]
 Lhot [Lo]

 Quiscence
 110 000 K
 0.08
 930

 Cool burst
 86-96 000 K
 0.25-0.45
 5600-10200

 Hot burst
 115-131 000 K
 0.11-0.14
 3400

Gonzales-Riestra & al. (1999):

Analysis of ARAS Spectra (Gàlis & al., 2019b)

ARAS 278 spectra from April 17, 2014 to November 24, 2018 Tartu Observatory (4 spectra, 1.5-m telescope, R = 6000 and 7000) Ondřejov (16 spectra, 2.0-m telescope, R = 13000).

> The spectroscopic observations of AG Dra were acquired by ARAS Group observers mostly in the framework of two observing campaigns which we initiated and coordinated in 2017 and 2018.

Increase of the EW of the lines
(including Raman OVI)
Absorption component disappears in HI, HeI
→ « Hot» outbursts

But, especially G1: Drop of Raman OVI

- new type of outburst
- some kind of transition between
- or combination of the *hot* and *cool* outbursts?

Symbiotic stars monitoring: AG Dra Outbursts and Quiescent states

AG Dra

G2 2017

7900

⁴Ro ₀o

7900

ъ

8

80

7900

7900

00

JD - 2450000 AG Dra - EW Hbeta

JD - 2450000

AG Dra - EW Hell4686

JD - 2450000

AG Dra - EW RamanOVI6830

JD - 2450000

7950

7950

7950

7950

ъ

-0 8000

8000

8000

8000

00

°09,0 0

00

°°°°

ъ

9.4

> ^{9.}

9.8

35

30

20

15

10 7850

35

30

25

15

10

5 7850

14

12

10

8

6

7850

889

25 25 2 0

10 7850

G3 2018

The fourth outburst during the present active stage of symbiotic binary AG Dra

ATel #11559; R. Galis, J. Merc (UPJS in Kosice), M. Vrastak (CAS), F. Teyssier, T. Lester, D. Boyd, W. Sims (ARAS Group), L. Leedjarv (Tartu Observatory) on 22 Apr 2018; 14:23 UT Credential Certification: Rudolf Galis (rudolf.galis@upjs.sk)

Symbiotic stars monitoring: AG Dra Outbursts and Quiescent states

AG Dra

Merc & al., 2019

Recent outburst activity of the symbiotic binary AG Draconis Merc & al., 2019

Symbiotic stars monitoring: AG Dra Outbursts and Quiescent states

AG Dra

Mysterious λ 5018 line detected during outbursts

Appears during outbursts Similar shape to He I λ 5016 Same variation of the EW

Classical [OIII] range for a symbiotic with normal red giant

0

5865

AG Dra

He I λ 5016 satellite component:

- 1. no blue shifted counterpart
- 2. missing in the other He I lines

Fe II (42) λ 5018: missing in the other lines of the multiplet

Mysterious λ 5018 line detected during outbursts

5180

5185

T CrB

Recurent symbiotic nova

T _{WD}		
L _{WD}	$40-100~L_{\odot}$	
M _{WD}	1.37 (0.13)	Stanishev 2004
Sp. type	M3III-M4III	
M _{RG}	1.12 (0.23)	
P _{orb}	227.55 d	Fekel & al. (2000)
d	рс	Gaia DR2
	·	

AAVSO Visual lightcurve

M_{WD} near Hhandrashekar limit RG filling its Roche Lobe Accretion Disk (very likely)

T CrB

T CrB high state since 2015 (see e.g. Munari & al., 2016)

Low state : MIII + weak Balmer lines

T CrB

T CrB

Collaboration: Ilkiewicz, Mikolajewska

Active phase

Active phases and flickering of a symbiotic recurrent nova T CrB K. Ilkwievicz MNRAS, 2016

Based on ARAS Spectra and

Figure 1. Variability of the equivalent width of H α , other selected emission line fluxes and the H α to H β flux ratio.

T CrB

Max EW(H α) = 60

Continuing analysis following Ilkiewicz & al. (2016)

Pale blue: published values Dark blue: our analysis

> Global trend of decline In parallel to the fading of the luminosity BUT Increase of [OIII]

58000

59000

T CrB

T CrB radial velocities

Orbital elements

• RG

- [OIII] 5007: constant mean = 27.4 km.s⁻¹
- He II: attempt, unsuccessfull

Parameter	ARAS 2019
P (days)	227.27
T _o (HJD)	2457021.3 +/- 0.4
K ₁	24.2 +/-0.3
е	0.0
a ₁ sin i (km)	75.7 +/- 1.2 10 ⁶
f(m)	0.34 +/- 0.02

Orbital Elements of T Coronae Bo

Parameter	Kenyon & Garcia 1986	KPNO-Data Solution	Final Solution
P (days)	227.53 ± 0.02	227.53 (fixed)	227,5687 ± 0,0099
T ₀ (HJD)	2,431,990.71 ± 0.13	2,451,104.6 ± 0.3	2,447,918.62 ± 0.27
γ (km s ⁻¹)	-27.89 ± 0.06	-27.9 ± 0.2	-27.79 ± 0.13
K_1 (km s ⁻¹)	23.32 ± 0.16	24.2 ± 0.2	23.89 ± 0.17
e	0.0	0.0	0.0
ω_1 (deg)			
$a_1 \sin i$ (km)	$73.0 \pm 0.6 \times 10^{6}$	75.9 ± 0.7 × 10 ⁶	74.77 ± 0.53 × 106
f(m)	0.299 ± 0.006	0.34 ± 0.01	0.3224 ± 0.0068

Fekel & al., 2000

T CrB

Pre-nova outburst monitoring

Adapted from Brad Shaeffer Diamonds : 1946 Brad Shaefer data Dots : AAVSO B band - 1 day mean

Outburst predicted : 2023.6 +/-1

CH Cyg

Collaborations:

M. Karovska

- A. Skopal
- G. Luna

Symbiotics: complex Complex symbiotic: CH Cyg Standard M6III until the '60

AAVSO V light curve

ARAS Spectra (> 700): continuous monitoring since 2014.5

CH Cyg

CH Cyg

sity

Sel

£is

H beta absorption H beta 12017-08-08 H beta 12017-07-30 5 5 0.9 0.8 4 4 0.7 arbitrary unit arbitrary unit 3 3 0.6 0.5 2 2 0.4 0.3 0.2 0.1 0 0 2000 -4000 -2000 2000 -4000 -2000 0 0 4790 4800 4810 4820 4830 4840 4850 4860 Wavelength (Angstrom) H beta |2017-12-06 H beta |2017-04-02 5 Hbeta 4861.363 - CH Cyg tlester 5 4 4 arbitrary unit arbitrary unit 3 3 1.5 2 2 0.5 0 0 -4000 -2000 2000 0 -4000 -2000 0 2000 velocity (km/s) velocity (km/s) -4000 -3000 -2000 -1000 2000 3000 4000 1000 Velocity (Km/sec)

Absorption in H β at 1 day interval Spectra: Tim Lester (R = 13000)

Various profiles of the absorption in H β Spectra: Joan Guarro (R = 9000) – Tim Lester (R = 13000) Grey: reference spectrum (2017-07-29)

CH Cyg

Flickering at short time scale

Halpha - CH Cyg PSO

P. Somogyi (HU) Lhires III 2400 I/mm R = 15000 2015-09-20 31 spectra 300 sec. From UT 19:50 to 21:50

2019: oscillations at low luminosity

Echelle spectra R = 9 to 13 0000 J. Guarro T. Lester F. Teyssier

5900

AG Peg 2015 outburst

First Z And-type outburst In the slowest nova

2015.5 2015.75 2016 AG Peg Magnitude EM [10⁶⁰ cm⁻³] Flux/10⁻¹⁰ v....[10³ km/s] HB 20 0.1xl HeII λ4686 0.5xlo [km/s] 0.9xl ≥ -20 HeII λ4686 .5xl Width [A] 0.9xl Raman OVI \lambda 6825 57300 57150 57200 57250 57350 57400

Julian date - 2400000

Swift observations of the 2015 outburst of AG Peg from slow nova to classical symbiotic outburst.

RAMSAY G., SOKOLOSKI J.L., LUNA G.J.M. and NUNEZ N.E. Mon. Not. R. Astron. Soc., 461, 3599-3606 (2016/October-1)

New outburst of the symbiotic nova AG Pegasi after 165 yr. SKOPAL A., SHUGAROV S.Y., SEKERAS M., WOLF M., TARASOVA T.N., TEYSSIER F., FUJII M., GUARRO J., GARDE O., GRAHAM K., et al. Astronomy and Astrophysics, volume 604A, 48-48 (2017/8-1)

V3890 Sgr

Symbiotic Recurrent nova Outbursts : 1962 1990 2019

Spectra: P. Dubovski (LISA R = 1000) P. Luckas (Alpy R = 600) W. Sims (LISA R = 1000)

V3890 Sgr

V3890 Sgr

New symbiotics

Observing program

On the request of Adrian Lucy and Jennifer Sokoloski (Columbia University)

Hen 3-1768 identified as a symbiotic star by Terry Bohlsen

Discovery of a Hot Symbiotic Star in the Cold Antarctic Sky: Symbiotics Are Outliers in SkyMapper *uvgriz* Photometry

Adrian B. Lucy^{1,10} (D), J. L. Sokoloski^{1,2}, N. E. Nuñez³, C. Wolf^{4,5} (D), T. Bohlsen⁵, and G. J. M. Luna^{7,8,9} (D) Published 2018 December 12 • © 2018. The American Astronomical Society. All rights reserved. <u>Research Notes of the AAS</u>, <u>Volume 2</u>, <u>Number 4</u>

Suspected Symbiotics Stars

Summary of Observations

								Observations							
									2018	3		2019			
	Name	RA (2000.0)	Dec (2000.0)	¥ mag*	M giant	Em. Lines	05	09	10	11	12	01	02	03	04
1	GAIA DR2 4636654969717900032	015049.53	-76 49 42.6	12.9		no					1				
2	UCAC3 157,43452	06 55 51.36	-11 44 05.3	12.3		no					1				
3	GDS J0731468-195434	07 31 46.82	-19 54 34.5	13.2								1			
4	ASASSN-V_J081823.00-111138.9	08 18 23.00	-11 11 38.9	12.5		no						1			
5	UCAC3 80:46364	08 34 45.15	-50 26 58.2	13.7		no					1				
6	GSC9507:2249	11 03 10.83	-83 57 11.3	11.2									1		
7		12 01 20.93	-79 20 14.7	12.3											
8	GAIA DR2 4131587500273361280	16 39 59.65	-18 44 38.1	13.9									1		
9	ASASSN-V J164007.54-382216.1	16 40 07.54	-38 22 16.1	13.86-14.74											
10	GAIA DR2 6019720819446985984	16 45 31.78	-36 22 31.6	12.9											
11	V2096 Oph	16 56 05.46	-24 06 37.0	12.9-14.0											
12	ER Oph	17 00 42.14	-26 10 12.4	11.8-<14.8											
13	ASASSN-V J170231.98-275954.2	17 02 31.98	-27 59 54.4	13.98-14.94											
14	GAIA DR2 4334886650491663104	17 06 08.44	-10 58 33.0	14.3										\neg	
15	SS 295	17 07 38.16	-07 44 48.6	13.1					1				1		
16	V2525 Oph	17 15 05.27	-09 23 50.1	11.9-<15.1									1		
17	GAIA DR2 4115021291723497088	17 17 45.67	-21 31 16.9	13.7											
18	GSC 09276-00130	17 18 09	-67 57 26.0	13.6										1	
19	GAIA DR2 4168021909706732672	17 25 26.34	-07 48 27.5	14.3									1		
20	GAIA DR2 4111779763989583232	17 26 18.27	-22 12 46.4	14.1										\neg	
21	GAIA DR2 4120809606303456896	17 27 08.69	-21 39 04.5	13.1										\neg	
22	GAIA DR2 5919388180059095296	17 30 58.39	-56 29 53.4	12.6		no		1						\neg	
23	ASASSN-V J173832.43-492840.2	17 38 32.42	-49 28 40.1	13.96-14.55										\neg	
24	FASTT 1100	17 53 45.30	-0107 46.8	14.04-14.30		Ha			1				1		
25	GAIA DR2 4150446010182968192	17 56 04.34	-13 10 03.4	13.1	M4				1						
26	GAIA DR2 4150099732733146112	17 59 43.87	-13 58 32.0	13.9											
27	SY Cra	18 03 21.54	-42 37 56.8	13.0-16.5p											
28	GAIA DR2 6345873798283774848	18 14 18.07	-85 59 06.5	11.7		no		1						\neg	
29	GAIA DR2 4048168377818693632	18 28 31.28	-28 45 02.9	11.9		no		1						\neg	
30	ASASSN-V J185421.70-274827.4	18 54 21.70	-27 48 27.8	12.89-13.63										\neg	
31	EN Sgr	19 22 42.08	-13 59 56.5	11.95-14.61		ні		2	2					\neg	
32	ASASSN-V J192916.53-224040.3	19 29 16.53	-22 40 40.3	12.52-13.02	M 3.5	Ha Hb		1						\neg	
33	ASAS J195948-8252.7	19 49 48.4	-82 52 37.5	11.6		yes	2								

New symbiotics

Identification of new stars (SN, DN, Symbiotics)

First spectra of TCP J19544251+1722281 identified as HbHa 1704-05 in outburst, obtained by Paolo Berardi

The Astronomer's Telegram

HBHa 1704-05: a bright and newly discovered symbiotic star, currently undergoing an "hot-type" outburst

ATel #11937; U. Munari (INAF Padova), S. Dallaporta, P. Valisa (ANS Collaboration), P. Ochner (Univ. Padova), R. Fidrich (HA4/VSS), P. Berardi, O. Garde, C. Buil (ARAS Group) on 11 Aug 2018; 11:20 UT R. Gàlis & al, 2019

... the presented results showed also the importance of professional/amateur collaborations. ARAS Group is a perfect example that such collaboration can be very successful and can bring important results. Thanks to amateur photometric and spectroscopic data, we are now able to monitor the evolution of symbiotic systems **on timescales which were not previously available.**

K. Ilkiewicz & al, 20xxx

we are thankful to members of the ARAS group for their wonderful work.

A.R.A.S Spectral Data Base - Eruptive stars section								
Symbiotic stars								
Names Number of stars Number of spectra	Belczynski 64 4606	K. & al. 2000					<u>Aras Spectral Data Base</u> <u>Observers codes</u>	
Current campaigns Current surveys Stars of interest	CH Cyg CI Cygni	AG Dra T CrB	SU Lyn BF Cyg	Z And AX Per	R Aqr AG Peg	RS Oph	observatories codes	
Outbursts	AX Per							

send spectra to : francoismathieu.teyssier at bbox.fr

Updated

77/	07	12010
211	U/)	2019

#	Name	AD (2000)	DE (2000) Nb	. Of spect	ra First spectrum	Last spectrum	Days Since Last	Frequency
1	EG And	0 44 37.1	40 40 45.7	126	12/08/2010	18/02/2019	159	30
2	AX Per	1 36 22.7	54 15 2.5	285	04/10/2011	05/07/2019	22	8
3	V471 Per	1 58 49.7	52 53 48.4	30	06/08/2013	14/02/2019	163	30
4	Omi Cet	2 19 20.7	-2 58 39.5	33	28/11/2015	09/02/2019	168	30
5	BD Cam	03 42 9.3	63 13 0.5	47	08/11/2011	02/07/2019	25	30
6	StHa 32	04 37 45.6	-01 19 11.8	5	02/03/2018	25/01/2019	183	8
7	UV Aur	05 21 48.8	32 30 43.1	81	24/02/2011	28/03/2019	121	30
8	V1261 Ori	05 22 18.6	-8 39 58	17	22/10/2011	29/12/2019	-155	30
9	StHA 55	05 46 42	6 43 48	10	17/01/2016	08/02/2019	169	30
10	SU Lyn	06 42 55.1	+55 28 27.2	164	02/05/2016	30/04/2019	88	15
11	77 CMi	07 24 13 9	8 53 51 7	61	29/09/2011	21/04/2019	97	30

Open database 56 objects 4600 spectra (R = 500 to 15000)

First check

- Identification
- Calibration
- Atmospheric response

Conditions of use:

- Aknowledgement to observers and ARAS database with a list of observers and Journal observation
- Observers included as co-authors if pivotal observations or contribution to the analysis

Contrib. Astron. Obs. Skalnaté Pleso 49, 217-227, (2019)

Eruptive stars monitoring and the ARAS database

F. Teyssier Observatoire Rouen Sud, France (E-mail: francoismathieu.teyssier@gmail.com)

Received: October 31, 2018; Accepted: December 19, 2018

https://ui.adsabs.harvard.edu/abs/2019CoSka..49..217T/abstract

Eruptive stars spectroscopy Cataclysmics, Symbiotics, Novae

Eruptive Stars Information Letter n° 41 #2019-01 18-05-2019

Observations of Jan. - Mar. 2019

Main results in a quaterly newsletter

42 issues downloadable: http://www.astrosurf.com/aras/novae/InformationLetter/InformationLetter.html

Indexed in NASA/ADS since January, 2019

Education of the observers:

- Texts from
- **Steve Shore**
- Agustin Skopal, Natalia Shagatova Rudolf Gàlis, Jaroslav Marc, Leedjarv Margarita Karovska

Spectroscopic observations of symbiotic stars in 2019-Q1

Show affiliations

Teyssier, F.; Boyd, D.; Guarro, J.; Sims, F.; Campos, F.; Lester, T.; Sollecchia, U.; Boussin, C.; Charbonnel, S.; Garde, O.; Somogyi, P.; Buil, C.; Berardi, P.; Marik, V.; Martineau, G.; Buchet, Y.; Diarrassouba, I.; Michelet, J.

198 spectra of 23 symbiotic stars at resolution from 500 to 15000 were obtained during 2019-Q1 by 18 observers. AG Dra is monitored before the expected outburst in 2019. At the current date (2019-05-18) no sign of outburst has been detected. From medium resolution spectra we have detected the appearence of an emission line in the red edge of He I 5016 during outbursts. The identification of the line is discussed. AX Per soon after the end of its eclipse has been detected in strong classical outburst, characterized by the weakening of high emission lines [Fe VII]. CH Cyg is in low luminosity, several spectra have been obtained during a short flare. V694 Mon, in high luminosity, has been monitored at high cadence during the season. The profiles of Balmer and Fe II lines is unusual, showing a classical P Cygni profile and the disappearance of the broad blue absorption lines.

Publication:	Eruptive Stars Information Letter, vol.41, p. 2-75
Pub Date:	May 2019
Bibcode:	2019ESIL412T 🕜